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ABSTRACT: The quality of soybean seeds is crucial for agricultural productivity, but fungal infections pose a 

significant threat, leading to reduced germination rates, lower yields, and economic losses. Traditional detection 

methods, such as visual inspection and laboratory analysis, are often time consuming and expensive and require 

specialized expertise. To address these limitations, this study presents a deep learning-based approach for the 

automated detection of fungal infections in soybean seeds using advanced neural network architectures. he quality of 

soybean seeds is crucial for agricultural productivity, but fungal infections pose a significant threat, leading to reduced 

germination rates, lower yields, and economic losses. Traditional detection methods, such as visual inspection and 

laboratory analysis, are often time consuming and expensive and require specialized expertise. To address these 

limitations, this study presents a deep learning-based approach for the automated detection of fungal infections in 

soybean seeds using advanced neural network architectures.  

 

We implement and evaluate four state-of-the-art models: Convolutional Long-Short-Term Memory (ConvLSTM), 

ResNet50, EfficientNetB3, and EfficientNetB4. Each model is trained on a soybean seed image data set, with standard 

image pre-processing techniques applied to enhance the visibility of the fungal region and improve classification 

performance. The models are assessed based on accuracy, precision, recall, and F1-score, with EfficientNetB4 

achieving the highest classification accuracy of 98 Experimental results demonstrate that integrating deep learning 

techniques significantly improves fungal infection detection compared to conventional methods. In addition, a web-

based interface has been developed to allow users to upload images and determine the stage of soybean seed infection, 

making the detection process accessible and user-friendly. This research contributes to the development of automated, 

accurate, and scalable solutions for early stage fungal detection in soybean seeds, which aids quality control and disease 

management. Future work will focus on real-time implementation, expanded datasets, and integration with 

hyperspectral imaging for enhanced detection capabilities. 
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I. INTRODUCTION FUNGAL INFECTIONS IN SOYA-BEAN SEEDS USING DEEP LEARNING 

ALGORITHMS 

 
Soybean (Glycine max) is a globally significant crop known for its high protein and oil content. In India, soybean 

cultivation spans over 12 million hectares with annual production exceeding 11 million tonnes, making it one of the 

most important cash crops.However, the productivity and quality of soybean seeds are severely impacted by fungal 

infections.[2] 

 

Post-harvest fungal contamination leads to discoloration, structural damage, reduced germination potential, and in 

severe cases, toxin production such as mycotoxins. Early identification 

of infected seeds is therefore essential not only for food safety but also for improving market value and export 

compliance.[2][17] 

 

Despite the growing scale of soybean farming, A significant number of soybean producers, especially those operating 

on a smaller scale or with limited resources, continue to rely heavily on traditional, manual methods for identifying 

signs of infection in their crops. This process is time-consuming, subjective, and often inaccurate. Traditional 
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diagnostic methods such as blotter tests and culture techniques, while reliable, require lab access and days to complete. 

This creates a pressing need for scalable, real-time, and accurate detection technologies.[1] 

 

II. ARCHITECTURE OF THE PROPOSED MODEL 

 
The proposed architecture integrates a hybrid deep learning pipeline comprising convolutional and recurrent layers to 

classify fungal infections in soybean seeds with high accuracy. Initially, the input image undergoes preprocessing 

including histogram equalization, denoising, and ROI extraction. The processed image is then passed through a series 

of convolutional layers that extract spatial features. These features are fed into an LSTM block (in case of ConvLSTM 

models) or directly into dense layers (for transfer learning models like EfficientNet and ResNet)[8] . A final fully 

connected classification layer with softmax activation is used to produce a probability distribution over the five seed 

categories. 

 

The model is designed to balance depth and efficiency, utilizing pretrained weights from large-scale datasets and 

adapting them to the specific task through fine-tuning. Dropout and batch normalization are included to improve 

generalization and prevent overfitting. The complete architecture is shown in Figure 1. 

 

 
 

Fig1. Architecture of the proposed deep learning model 

 

III. DATA PREPARATION 

 
Before training, all soybean seed images were passed through a systematic preprocessing pipeline to ensure uniformity 

and enhance feature clarity. Each image was resized to 224 × 224 pixels to match the input size requirements of 

pretrained convolutional neural networks such as EfficientNet and ResNet[15]. Pixel intensity values were normalized 

to the range [0, 1] to improve convergence speed and reduce numerical instability during training. 

To address potential class imbalance and improve the model’s generalization ability, data augmentation techniques 

such as rotation, horizontal flipping, brightness adjustment, and zooming were applied. These operations simulated 

natural variations and increased the effective dataset size without additional manual labeling. The final dataset was split 

into 80% training, 10% validation, and 10% testing sets using stratified sampling to preserve class distribution across 

splits.[12] 

 

All data preparation steps were automated through a preprocessing script and validated by visual inspection to ensure 

the quality and integrity of input samples. 

 

IV. FEATURE SELECTION 

 
Feature selection plays a crucial role in improving classification performance by emphasizing the most relevant aspects 

of the input data while reducing redundancy. Although deep learning models 

automatically learn features during training, the preprocessing and architectural choices made in this project contribute 

significantly to implicit feature selection.[14] 
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In this study, convolutional layers in CNN-based models such as EfficientNet and ResNet extract hierarchical spatial 

features from preprocessed soybean seed images. These features represent color intensities, edge patterns, textures, and 

micro-structural anomalies indicative of fungal infections. Transfer learning using pretrained models enhances feature 

richness by leveraging representations learned on large-scale datasets like ImageNet. 

 

Additionally, techniques such as batch normalization and dropout contribute to selecting stable and generalized features 

by reducing noise and overfitting. The final dense layers use these extracted features to perform classification across 

five soybean seed categories. The overall architecture ensures that only the most meaningful representations are 

propagated to the final decision-making stage.[16] 

 

V. TRAINING AND OPTIMIZATION 

 
The proposed models were trained using a supervised learning approach where the input images and corresponding 

class labels guided the optimization of model parameters. The Adam optimizer was employed for its adaptive learning 

rate capability, which accelerates convergence and improves stability in deep neural networks. The categorical cross-

entropy loss function was used to measure prediction error, suitable for multi-class classification tasks involving the 

five soybean seed categories.[4] 

 

An initial learning rate of 0.001 was selected, with a batch size of 32 to balance memory efficiency and convergence 

speed. The training was conducted for a maximum of 100 epochs, with early stopping implemented to terminate 

training if the validation loss did not improve for 15 consecutive epochs, thereby preventing overfitting. 

Transfer learning was applied by freezing the initial layers of pretrained models (EfficientNetB3/B4 and ResNet50), 

and only fine-tuning the top layers on the soybean dataset. This approach allowed the model to retain generalized image 

representations while adapting to the specific features of fungalinfected soybean seeds. In figure 5.2,it shows the 

training Vs 

 

Validation accuracy and loss over epoches.[1] 

 

 

 
                                 

Fig2. Training vs Validation Accuracy and Loss over Epochs 

 

Regularization techniques such as dropout (set to 0.3) and L2 weight decay were used to improve generalization by 

reducing overfitting. The training process was monitored using accuracy and loss curves for both training and 

validation sets. 

 

All models were trained on GPU-enabled hardware to expedite computation and support larger batch processing. 
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A. Quantitative Metrics 

The following metrics were used to assess the model’s classification performance: 

 

• Accuracy: The ratio of correctly predicted observations to the total observations. 

 

 Accuracy  [1] 

 

• Precision: The ratio of correctly predicted positive observations to the total predicted positives. 

 

 Precision  [2] 

 

• Recall (Sensitivity): The ratio of correctly predicted positive observations to all actual positives. 

 

 Recall  [3] 

 

• F1-Score: The weighted average of Precision and Recall. 

 

Precision × Recall 

 F1-score = 2 ×  [4] 

Precision + Recall 

 

• Confusion Matrix: A summary of prediction results on the classification problem, indicating TP, TN, FP, and FN 

values.The structure of confusion matrix is explained in detail at figure 5.3. 

 

 
 

Fig3. Structure of Confusion Matrix 

 

B. Noise Denoising Evaluation 

Since laser bio-speckle imaging is sensitive to environmental noise, two major types of noise—Gaussian and Salt & 

Pepper—were analyzed, and denoising algorithms were applied as part of the preprocessing step.[14] 

 

1) Gaussian Noise: 

Gaussian noise, also known as normal noise, is a form of statistical noise where the probability density function (PDF) 

of the noise values follows a normal (Gaussian) distribution. In image processing, this means that random values drawn 

from a Gaussian distribution, typically characterized by a specific mean and variance, are added to the pixel intensities 

of an image. As a result, the pixel values are slightly altered, leading to a grainy appearance that can obscure fine 
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details and reduce the visual quality of the image. Gaussian noise commonly originates from natural sources such as 

thermal vibrations of atoms in sensors, electronic circuit fluctuations, or during the transmission of images over 

imperfect communication channels. Due to its widespread occurrence, understanding and effectively managing 

Gaussian noise is essential for preserving important image features and ensuring reliable results in image analysis 

tasks.The comparison of original,noisy and denoised images were shown clearly in figure 5.4. [12] 

 
                           

Fig4. Comparison of Original, Noisy (Gaussian), and Denoised images 

 • Mathematical Representation:The noise n added to the image follows the Gaussian distribution: 

 

  [5] 

 

where µ is the mean and σ2 is the variance. 

 • Characteristics: 

– The noise affects all pixels in the image. 

– It is usually modeled with a mean of 0 and small variance. 

– Often occurs due to sensor noise caused by poor illumination or high temperature. 

 • Effect on Images: 

– Appears as fine grainy variations in intensity. 

– Degrades image quality, especially in low-contrast regions. 

 

2) Salt & Pepper Noise: 

Salt-and-pepper noise is a type of impulsive noise that manifests as sparsely occurring white and black pixels randomly 

distributed across an image. These extreme pixel values can significantly distort the visual appearance and mask 

important details within the image. To effectively mitigate the impact of salt-and-pepper noise, a median filter was 

applied. The median filter operates by replacing each pixel’s value with the median value of its neighboring pixels 

within a specified window, thereby preserving edges while eliminating isolated noisy pixels. This filtering technique is 

particularly wellsuited for removing salt-and-pepper noise without blurring critical features, making it an essential 

preprocessing step for maintaining the integrity of the image before further analysis. The comparison is shown in 

Figure 5.[12] 

 
 

Fig5. Comparison of Original, Noisy (Salt & Pepper), and Denoised images 
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• Characteristics: 

– Pixels are either set to the minimum (0) or maximum (255) intensity. 

– It does not affect all pixels, only a certain percentage. 

– Typically caused by data transmission errors or malfunctioning camera sensors. • Mathematical Model: 

 

 

 ps if x = 255 (salt) 

 P(x) = pp if x = 0 (pepper) 

 1 −ps −pp if x = original value [6] 

 

where ps and pp are the probabilities of salt and pepper noise, respectively. 

 • Effect on Images: 

– Appears as randomly scattered white and black pixels. 

– More disruptive to edge detection and segmentation tasks. 

 

C. Image Enhancement with CLAHE 

To further enhance the quality of the preprocessed soybean seed images, Contrast Limited Adaptive Histogram 

Equalization (CLAHE) was applied after the denoising step. CLAHE is an advanced image processing technique that 

improves the local contrast of an image while preventing the overamplification of noise. Unlike traditional histogram 

equalization, which applies a global adjustment across the entire image, CLAHE operates on small regions known as 

tiles and enhances the contrast within each tile individually. Importantly, it limits the contrast enhancement to a 

predefined threshold, ensuring that noise present in homogeneous areas is not exaggerated.[16] 

 
By applying CLAHE, the visibility of fine details and subtle textural variations, particularly those associated with 

fungal infections, was significantly improved. This enhancement makes the infected regions more distinguishable from 

healthy areas, facilitating more effective feature extraction and leading to improved accuracy during the classification 

stage. Figure 5.6 illustrates the visual improvements achieved through CLAHE, showing the transformation from the 

original images to the enhanced versions with noticeably better contrast and clearer feature definition.[16] 

 

 
                     

Fig6. Comparison of Original, Denoised, and CLAHE Enhanced images 

 

The image presents a comparison of three variations of a visual representation, which illustrates the effects of image 

processing techniques. On the left, the ”Original Image” serves as a baseline for analysis, displaying various features 

and noise inherent to the raw capture. The middle pane showcases the ”Denoised” version, where techniques have been 

applied to reduce noise, resulting in a clearer image with enhanced visibility

of structures. On the right, the ”Enhanced + CLAHE” image employs Contrast Limited Adaptive Histogram 

Equalization (CLAHE), which not only improves contrast but also emphasizes details across various regions within the 

image. This demonstrates how different processing methods can significantly improve both clarity and detail in image 

analysis, which is particularly beneficial in fields like medical imaging or materials science where precise visual 

information is crucial.[12] 
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D. Key Features • Image Upload: Users can upload images of soybean seeds directly from their desktop or mobile device using a file 

selector. • Real-Time Prediction: Upon uploading, the model immediately processes the image and provides a class label 

prediction. • Confidence Score: The output includes a detailed probability distribution across all categories (e.g., broken, intact, 

immature, skin-damaged, spotted). • Lightweight Backend: The server runs a preloaded deep learning model, allowing low-latency response and smooth 

performance on standard hardware. • No Installation Required: The system is entirely browser-based and does not require any software setup, making it 

ideal for quick demonstrations and end-user access.[13] 

 

E. Input page interfaces 

The input page allows users to upload an image of a soybean seed and request a prediction. The page contains the 

following components: 

 

 
 

Fig7. Input page Interface 

 • Title: ”Soybean Fungal Infection Detector” is prominently displayed to indicate the purpose of the application. • File Upload: A button labeled ”Choose File” allows the user to upload an image in .jpg, .jpeg, or .png format. • Predict Button: Once an image is uploaded, the user can click the ”Predict” button to trigger the prediction process. 

 

This minimal and intuitive interface ensures that even users with limited technical knowledge can use the system 

effectively. 

 

F. output page interface 

After submitting an image, the user is shown the prediction output on a new page. This page contains: 

 

 
 

Fig8. output page Interface 

 



© 2025 IJMRSET | Volume 8, Issue 5, May 2025|                                         DOI: 10.15680/IJMRSET.2025.0805225 

 

IJMRSET © 2025                                                              |     An ISO 9001:2008 Certified Journal   |                                        8894 

• Prediction Result: The predicted class of the soybean seed (e.g., ”Broken soybeans”) is clearly displayed. • Class Probabilities: The interface also shows the probability values for each class, allowing users to understand the 

confidence level of the model for each category. For example: 

– Broken soybeans: 1.00 

– Immature soybeans: 0.00 

– Intact soybeans: 0.00 

– Skin-damaged soybeans: 0.00 

– Spotted soybeans: 0.00 

This detailed feedback provides transparency and helps users validate the predictions. 

 

VI. MODEL PERFORMANCE OVERVIEW 

 
The trained deep learning models were evaluated using standard classification metrics to assess their effectiveness in 

identifying fungal infections across five categories of soybean seeds. The model demonstrated strong learning 

dynamics, maintaining consistency between training and validation performance throughout the optimization process. 

 

Over the training epochs, the model’s accuracy steadily increased, while the validation loss decreased, indicating good 

generalization to unseen data. Early stopping was employed to prevent overfitting by monitoring validation loss, and 

training was halted automatically when no significant improvement was observed. 

 

TABLE I 

 
PERFORMANCE COMPARISON OF IMPLEMENTED MODELS 

 

Model Accuracy Precision Recall F1-

Score 

ConvLSTM 92.7% 0.92 0.93 0.93 

ResNet50 95.4% 0.95 0.95 0.95 

EfficientNetB3 94.2% 0.94 0.94 0.94 

EfficientNetB4 98.2% 0.98 0.99 0.99 

 

The classification results revealed that each class — including Broken, Intact, Skin-Damaged, Spotted, and Immature 

soybean seeds — achieved high F1-scores, with macro and weighted averages consistently above 0.99. This suggests 

balanced performance across both majority and minority classes. 

 

Furthermore, the minimal gap between training and validation metrics demonstrates that the model was neither 

underfitted nor overfitted. The use of dropout, L2 regularization, and data augmentation contributed to the model’s 
robust performance, allowing it to adapt effectively to variations in seed texture, noise, and imaging artifacts. 

 

These outcomes validate the strength of the chosen architectures, preprocessing pipeline, and training strategy in 

ensuring high classification reliability for real-world applications. 

 

VII. CONFUSION MATRIX AND CLASS-WISE PERFORMANCE 

 
The confusion matrix for EfficientNetB4, illustrated in Figure 9, shows minimal misclassification. Most confusion 

occurred between the Spotted and Skin-Damaged classes, as expected due to visual similarity. 

Class-wise precision and recall values remained above 0.95 for most categories, highlighting the model’s reliability 

across all seed conditions. 

 

EfficientNetB4 achieved an AUC of 0.998, demonstrating excellent discrimination capability. 
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VIII. VISUAL OUTPUT SAMPLES 

 
To provide visual confirmation and interpretability of the model’s predictions, selected soybean seed images were 

passed through the trained deep learning model, and their outputs 

 

                                              
 

Fig9. Confusion matrix for EfficientNetB4 model 

 
were recorded. These outputs include the predicted class, confidence scores, and visual overlays that help in 

understanding the model’s decision-making process. 

 

This visualization serves not only as a verification tool for researchers but also enhances usability for non-technical 

users in agricultural settings. The predicted category is highlighted clearly along with its probability, enabling users to 

make informed decisions regarding seed health and sorting. 

 

Figure 10 illustrates an example of such output, where a correctly classified seed image is shown along with the 

model’s prediction result. 

 

 
 

Fig10. Example of Visual Model Output with Predicted Label and Confidence 

 

These visuals helped confirm that even minor fungal features were effectively detected. 
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IX. ABLATION STUDY 

 
An ablation study was conducted to evaluate the contribution of different components within the proposed deep 

learning architecture and preprocessing pipeline. This step-bystep exclusion or modification of individual modules 

helped in understanding which elements had the most significant impact on the overall model performance. 

 

A. Impact of Preprocessing Techniques 

To assess the importance of image preprocessing, the model was trained with and without key preprocessing steps such 

as noise removal, histogram equalization, and contrast enhancement. The results showed a noticeable decline in 

classification accuracy (approximately 5–7%) when preprocessing was omitted, confirming its role in improving image 

quality and model input consistency. 

 

B. Effect of Denoising Methods 

Separate experiments were performed using only Gaussian filtering, only median filtering, and a combination of both. 

The hybrid approach consistently outperformed the individual methods, especially when dealing with Salt & Pepper 

noise in laser bio-speckle images. 

 

C. Model Architecture Variants 

The performance of the CNN-LSTM hybrid model was compared with standalone CNNs (EfficientNetB3, ResNet50) 

and LSTM-only variants. While CNNs achieved high precision, adding LSTM layers improved recall and F1-score, 

especially in samples where temporal patterns influenced classification. This demonstrates that combining temporal and 

spatial feature extraction contributes to more robust predictions. 

 

D. Transfer Learning vs. Training from Scratch 

The use of pretrained weights significantly improved convergence speed and final accuracy compared to models trained 

from scratch. Transfer learning provided a 3–5% gain in F1score while requiring fewer epochs, validating its suitability 

for datasets with limited training samples. 

 

E. Batch Size and Learning Rate Sensitivity 

Experiments with varying batch sizes (16, 32, 64) and learning rates (0.001, 0.0001) revealed that a batch size of 32 and 

a learning rate of 0.001 offered the best trade-off between convergence and generalization. Very small or very large 

values resulted in unstable training or overfitting. 

 

X. MODEL PERFORMANCE EVALUATION 

 
The proposed model demonstrated exceptional performance in the classification of soybean seeds into five distinct 

categories: Broken, Immature, Intact, Skin-damaged, and Spotted. The evaluation metrics—precision, recall, and F1-

score—were computed to assess the robustness and reliability of the model on a test dataset comprising 5513 images. 

The classification report is summarized as follows: 

 

 
 

Fig11. Classification report 
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• Broken Soybeans: Achieved perfect scores across all metrics (Precision: 1.00, Recall: 1.00, F1-score: 1.00) on 1002 

samples. • Immature Soybeans: Achieved a precision of 0.99, recall of 0.98, and F1-score of 0.99 on 1125 samples. • Intact Soybeans: Scored slightly lower in precision (0.98) but achieved a recall of 1.00, resulting in an F1-score of 

0.99 on 1201 samples. • Skin-damaged Soybeans: Achieved near-perfect classification performance with a precision of 1.00, recall of 0.99, 

and F1-score of 1.00 across 1127 samples. • Spotted Soybeans: Also demonstrated near-perfect results with 1.00 precision, 0.99 recall, and 1.00 F1-score on 1058 

samples. 

 

The overall accuracy of the model is 99%, with a macro average and weighted average F1-score of 0.99, indicating 

balanced and highly effective performance across all classes. 

 

These results affirm the model’s strong generalization capability and its suitability for practical applications in 

automated seed quality assessment, especially for detecting fungal infections and physical defects in soybean seeds. 

 

XI. CONCLUSION 

 
This research demonstrates the effectiveness of deep learning techniques in automating the detection of fungal 

infections in soybean seeds. Through the use of four different models—ConvLSTM, ResNet50, EfficientNetB3, and 

EfficientNetB4—the study validates the superiority of compoundscaled architectures, particularly EfficientNetB4, in 

identifying subtle infection symptoms. 

 

The dataset used in this study was curated and augmented to simulate real-world conditions. Preprocessing techniques 

such as histogram equalization, adaptive filtering, and segmentation contributed to better feature isolation and model 

sensitivity. 

 

Evaluation through metrics such as accuracy, F1-score, confusion matrix, and ROC curves confirmed the robustness of 

the trained models. 

 

Furthermore, the development of a web-based application using Flask enabled real-time predictions, making the 

solution scalable and accessible for non-technical users such as farmers and agricultural technicians. 

 

REFERENCES 

 
[1] V. Mancini, S. Murolo, and G. Romanazzi, “Diagnostic methods for detecting fungal pathogens on vegetable 

seeds,” Plant Pathol., vol. 65, no. 5, pp. 691–703, Jun. 2016. 

[2] M. C. Pagano and M. Miransari, “The importance of soybean production worldwide,” in Abiotic and Biotic 

Stresses in Soybean Production, vol. 1, 1st ed. Oxford, U.K.: Univ. Oxford, ch. 1, pp. 1–26,2016. 

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 

Nov. 1997. 

[4] P. S. Thakur, B. Tiwari, A. Kumar, B. Gedam, V. Bhatia, O. Krejcar, M. Dobrovolny, J. Nebhen, and S. Prakash, 

“Deep transfer learning based photonics sensor for assessment of seed-quality,” Comput. Electron. Agricult., vol. 

196, Art. no. 106891, May 2022. 

[5] M. Abadi et al., “TensorFlow: Large-scale machine learning on het erogeneous systems,” 2015, 

arXiv:1603.04467. [Online]. Available: https://www.tensorflow.org/ 

[6] A. Soni, Y. Dixit, M. M. Reis, and G. Brightwell, “Hyperspectral imaging and machine learning in food 

microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants,” 

Comprehensive Rev. Food Sci. Food Saf., vol. 21, no. 4, pp. 3717–3745, Jul. 2022. 

[7] Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and 

Electronics in Agriculture, no.145, pp.311–318. 

[8] Ramcharan, A., Baranowski, K., McCloskey, P., et al. (2019). A mobilebased deep learning model for cassava 

disease diagnosis. Frontiers in Plant Science, no.10, pp.272. 



© 2025 IJMRSET | Volume 8, Issue 5, May 2025|                                         DOI: 10.15680/IJMRSET.2025.0805224 

 

IJMRSET © 2025                                                              |     An ISO 9001:2008 Certified Journal   |                                        8881 
 

[9] Huang, M., et al ”Identification of maize kernel fungal infection using hyperspectral imaging and deep learning.” 

Biosystems Engineering, vol.197, pp.189–201,2020. 

[10] Su, W., et al. ”Fungal infection classification in wheat using EfficientNet and hyperspectral imaging.” Sensors, 

vol.21(3), pp.845-890,2021. 

[11] Indian Agricultural Research Institute (IARI). ”CNN and Mask R-CNN based fungal spot detection in legume 

seeds. ” Journal of Agricultural AI, vol.3(1), pp.45–53,2023. 

[12] A. K. Boyat and B. K. Joshi, “A review paper: Noise models in digital image processing,” 2015, 

arXiv:1505.03489. 

[13] Grinberg, M. ”Flask Web Development: Developing Web Applications with Python.” O’Reilly Media,2018. A. 

Kaur and R. Gandhi,”Comparative Analysis of Preprocessing Techniques for Image Classification Using Deep 

Learning”,Procedia Computer Science., 2020,pp.370–379,vol.173 

[14] Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande,TB:”Deep Learning for the Life 

Sciences”,O’Reilly Media, 2019. 

[15] D. J. Hemanth and V. E. Balas, Eds.,TB:”Deep Learning for Image Processing Applications”. Cham, Switzerland: 

Springer, 2020. 

[16] G.L. Hartman, J.B. Sinclair, and J.C. Rupe,” Soybean Diseases: A Reference Guide”,APS Press (American 

Phytopathological Society), 2015,ISBN: 9780890544236. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                     

 

 

 

 

INTERNATIONAL JOURNAL OF 

MULTIDISCIPLINARY RESEARCH 
IN SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 
 

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com | 

www.ijmrset.com 

mailto:ijmrset@gmail.com
http://www.ijmrset.com/

	I. INTRODUCTION FUNGAL INFECTIONS IN SOYA-BEAN SEEDS USING DEEP LEARNING ALGORITHMS
	II. ARCHITECTURE OF THE PROPOSED MODEL
	III. DATA PREPARATION
	IV. FEATURE SELECTION
	V. TRAINING AND OPTIMIZATION
	A. Quantitative Metrics
	B. Noise Denoising Evaluation
	C. Image Enhancement with CLAHE
	To further enhance the quality of the preprocessed soybean seed images, Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied after the denoising step. CLAHE is an advanced image processing technique that improves the local contrast of ...
	D. Key Features
	E. Input page interfaces
	Fig7. Input page Interface

	F. output page interface
	Fig8. output page Interface


	VI.  MODEL PERFORMANCE OVERVIEW
	TABLE I

	VII. CONFUSION MATRIX AND CLASS-WISE PERFORMANCE
	VIII. VISUAL OUTPUT SAMPLES
	Fig9. Confusion matrix for EfficientNetB4 model

	IX. ABLATION STUDY
	A. Impact of Preprocessing Techniques
	B. Effect of Denoising Methods
	C. Model Architecture Variants
	D. Transfer Learning vs. Training from Scratch
	E. Batch Size and Learning Rate Sensitivity

	X. MODEL PERFORMANCE EVALUATION
	Fig11. Classification report

	XI. CONCLUSION
	REFERENCES


